Coordinate Geometry

Key Concepts

# Concept Explanation
1 Distance Formula Distance between A(x₁,y₁) & B(x₂,y₂) = √[(x₂–x₁)²+(y₂–y₁)²]
2 Section Formula Point dividing AB in ratio m:n internally = [(mx₂+nx₁)/(m+n), (my₂+ny₁)/(m+n)]
3 Mid-Point Mid-Point of AB = [(x₁+x₂)/2, (y₁+y₂)/2]
4 Centroid of Δ Centroid G = [(x₁+x₂+x₃)/3, (y₁+y₂+y₃)/3]
5 Slope of Line m = (y₂–y₁)/(x₂–x₁); horizontal→m=0, vertical→m=∞
6 Equation of Line y–y₁ = m(x–x₁) or ax+by+c=0
7 Area of Triangle ½

15 Practice MCQs

  1. Distance between (3,4) and (–1,1) is A) 3 B) 4 C) 5 D) 6
    Answer: C
    Solution: √[(–1–3)²+(1–4)²]=√(16+9)=5
    Shortcut: 3-4-5 Pythagorean triplet
    Tag: Distance Formula

  2. The mid-point of (7, –5) and (3, 9) is A) (5,2) B) (5,–2) C) (2,5) D) (–2,5)
    Answer: A
    Solution: [(7+3)/2, (–5+9)/2] = (5,2)
    Shortcut: Average x and y separately
    Tag: Mid-Point

  3. A line makes 45° with the positive x-axis. Its slope is A) 0 B) 1 C) –1 D) √3
    Answer: B
    Solution: m = tan 45° = 1
    Shortcut: tan θ gives slope directly
    Tag: Slope

  4. Area of triangle with vertices (0,0), (4,0), (0,3) is A) 6 B) 12 C) 7 D) 5
    Answer: A
    Solution: ½×base×height = ½×4×3 = 6
    Shortcut: Right-angled ⇒ ½×product of legs
    Tag: Area

  5. The centroid of (2,1), (6,3), (4,9) is A) (4,13/3) B) (12,13) C) (4,4) D) (4,13)
    Answer: A
    Solution: [(2+6+4)/3, (1+3+9)/3] = (12/3,13/3)
    Shortcut: Sum coordinates ÷3
    Tag: Centroid

  6. Point dividing (1,2) and (7,8) internally in ratio 1:2 is A) (3,4) B) (4,3) C) (5,6) D) (6,5)
    Answer: A
    Solution: x=(1×7+2×1)/3=9/3=3; y=(1×8+2×2)/3=12/3=4
    Shortcut: Weighted average
    Tag: Section Formula

  7. Slope of line 3x–4y+12=0 is A) 3/4 B) –3/4 C) 4/3 D) –4/3
    Answer: A
    Solution: Rewrite y=(3/4)x+3 ⇒ m=3/4
    Shortcut: For ax+by+c=0, m=–a/b
    Tag: Line Equation

  8. The value of k for which (2,k) lies on 5x–2y=10 is A) 0 B) 5 C) –5 D) 2
    Answer: A
    Solution: 5(2)–2k=10 ⇒ 10–2k=10 ⇒ k=0
    Shortcut: Plug x, solve y
    Tag: Line Equation

  9. Distance of point (7,24) from origin is A) 25 B) 24 C) 31 D) 30
    Answer: A
    Solution: √(7²+24²)=√(49+576)=√625=25
    Shortcut: 7-24-25 triplet
    Tag: Distance Formula

  10. If A(1,2), B(5,6), C(9,2), then ΔABC is A) Equilateral B) Right C) Isosceles D) Scalene
    Answer: C
    Solution: AB=√32, BC=√32, AC=8 ⇒ AB=BC
    Shortcut: Compare distances
    Tag: Distance

  11. The line y=mx+c passes through (2,3) and (4,7). Find m. A) 1 B) 2 C) 3 D) 4
    Answer: B
    Solution: m=(7–3)/(4–2)=4/2=2
    Shortcut: (y₂–y₁)/(x₂–x₁)
    Tag: Slope

  12. Area of quadrilateral with vertices (0,0), (3,0), (3,2), (0,2) is A) 5 B) 6 C) 7 D) 8
    Answer: B
    Solution: Rectangle 3×2 = 6
    Shortcut: Count grid squares
    Tag: Area

  13. The reflection of (3,4) over x-axis is A) (3,–4) B) (–3,4) C) (–3,–4) D) (4,3)
    Answer: A
    Solution: x same, y sign flipped
    Shortcut: x-axis refl ⇒ y→–y
    Tag: Reflection

  14. If slope of AB is ½ and A(2,–1), B(x,3), then x= A) 6 B) 10 C) –6 D) 4
    Answer: B
    Solution: (3–(–1))/(x–2)=½ ⇒ 4/(x–2)=½ ⇒ x–2=8 ⇒ x=10
    Shortcut: Cross-multiply quickly
    Tag: Slope

  15. The point (–2,5) lies in which quadrant? A) I B) II C) III D) IV
    Answer: B
    Solution: x negative, y positive
    Shortcut: II quadrant sign (–,+)
    Tag: Quadrants

Speed Tricks

Situation Shortcut Example
Right triangle vertices Use ½×base×height instead of determinant (0,0),(a,0),(0,b) ⇒ area=½ab
Collinearity check Area = 0 or slopes AB = BC Points (1,2),(3,4),(5,6) ⇒ slope always 1
Centroid memory “Add & divide by 3” (1,1),(4,3),(7,5) ⇒ G=(12/3,9/3)=(4,3)
Slope from standard line m = –(coeff of x)/(coeff of y) 2x–5y+7=0 ⇒ m=2/5
Distance on grid Count Δx & Δy, look for Pythagorean triplets (5,1)→(9,4): Δx=4, Δy=3 ⇒ dist=5

Quick Revision

Point Detail
1 Distance formula always gives positive value—take square root last.
2 Mid-point = average of coordinates.
3 Centroid divides median in 2:1; coordinates are simple mean.
4 Slope tan θ → θ=45° gives m=1; θ=0° gives m=0.
5 Horizontal line equation: y = k; vertical: x = k.
6 Area formula returns signed value—use absolute value for area.
7 Three points collinear ⇒ area of triangle = 0.
8 Reflection in x-axis: y → –y; in y-axis: x → –x.
9 Section formula works externally too—just use –m:n ratio.
10 Always sketch rough plot to visualise quadrant, slope or shape.